Correlating Divalent Ion Interactions with RNA Structure Changes in TAR RNA
نویسندگان
چکیده
منابع مشابه
EPR spectroscopic analysis of TAR RNA-metal ion interactions.
Metal ion-induced changes in HIV-1 TAR RNA internal dynamics were determined by the changes in EPR spectral width for TAR RNAs containing spin-labeled nucleotides (U23, U25, U38, and U40). This gave a dynamic signature for each of 10 metal ions studied, which fell into one of three distinct groups. While Li(+) and K(+) had little effect on TAR RNA internal dynamics, Na(+) unexpectedly had a dyn...
متن کاملRole of RNA structure in arginine recognition of TAR RNA.
The human immunodeficiency virus Tat protein binds specifically to an RNA stem-loop structure (TAR) that contains two helical stem regions separated by a three-nucleotide bulge. A single arginine within the basic region of Tat mediates specific binding to TAR, and arginine as the free amino acid also binds specifically to TAR. We have previously proposed a model in which interaction of the argi...
متن کاملInvestigation of RNA-protein and RNA-metal ion interactions by electron paramagnetic resonance spectroscopy. The HIV TAR-Tat motif.
Electron paramagnetic resonance (EPR) spectroscopy was used to investigate changes in dynamics of spin-labeled nucleotides in the TAR RNA (U23, U25, U38, and U40) upon binding to cations, argininamide, and two peptides derived from the Tat protein. Nearly identical changes in dynamics were obtained for either calcium or sodium ions, indicating the absence of a calcium-specific structural change...
متن کاملDivalent Ion Dependent Conformational Changes in an RNA Stem-Loop Observed by Molecular Dynamics
We compare the performance of five magnesium (Mg(2+)) ion models in simulations of an RNA stem loop which has an experimentally determined divalent ion dependent conformational shift. We show that despite their differences in parametrization and resulting van der Waals terms, including differences in the functional form of the nonbonded potential, when the RNA adopts its folded conformation, al...
متن کاملPredicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions.
A full understanding of RNA-mediated biology would require the knowledge of three-dimensional (3D) structures, structural flexibility, and stability of RNAs. To predict RNA 3D structures and stability, we have previously proposed a three-bead coarse-grained predictive model with implicit salt/solvent potentials. In this study, we further develop the model by improving the implicit-salt electros...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The FASEB Journal
سال: 2009
ISSN: 0892-6638,1530-6860
DOI: 10.1096/fasebj.23.1_supplement.845.3